Задачи о многочленах

- 1. Если поле K конечно, то любая функция $f:K\times\cdots\times K\to K$ задаётся многочленом от n переменных.
- 2. Найдите многочлен 3-й степени f, для которого f(1)=3, f(2)=7, f(-1)=-5, f(-2)=-21.
- 3. Многочлен f степени < n принимает в n последовательных целых числах целые значения. Докажите, что f принимает целые значения при любых целых значениях переменной.
- 4. Найдите НОД многочленов:
 - (a) $x^4 + 2x^3 x^2 4x 2 \text{ if } x^4 + x^3 x^2 2x 2;$
 - (b) $x^m 1 \text{ if } x^n 1$.
- 5. Найдите:
 - (a) все неприводимые многочлены над ${\bf Z}_2$ степени 5;
 - (b) все неприводимые многочлены над \mathbf{Z}_3 степени ≤ 3 со старшим коэффициентом 1;
 - (c) число неприводимых многочленов над \mathbf{Z}_3 степени 4 со старшим коэффициентом 1.
- 6. Разложите на неприводимые множители над полем $\mathbb Q$ многочлены:
 - (a) $2x^4 + 3x^3 + 5x 3$:
 - (b) $x^5 2x^3 + 4x^2 2x 5$.
- 7. Докажите неприводимость над полем Q многочленов:
 - (a) $(x-a_1)\cdots(x-a_n)-1$,
 - (b)* $(x-a_1)^2 \cdots (x-a_n)^2 + 1$,

где a_1, \dots, a_n — попарно различные целые числа.

- 8. С последовательностью чисел $a_0, a_1, \ldots, a_n, \ldots$ проделывают следующую операцию: каждый член a_n заменяют на $a_{n+1}-a_n$. Докажите, что если $a_n = f(n)$, где f некоторый многочлен, то применив эту операцию несколько раз, получим последовательность из одних нулей. Верно ли обратное?
- 9. Вычислите суммы:
 - (a) $1^3 + 2^3 + \ldots + n^3$:
 - (b) $1^4 + 2^4 + \ldots + n^4$.