Листок 4. Функции.

Напоминание. Тусть $\mathcal{S}: A \longrightarrow B$. Тогда множество Aназывается областью определения функции f , а множество всех $g \in B$ рые являются значениями функции f на некоторых $lpha \in ilde{\mathsf{A}}$, называется множеством значений функции 4

Запачи.

I. Определить множество значений функции $f: \mathbb{R} \to \mathbb{R}$, если: a) f(x) = |x|;

6) f(x) = |x| + 1; B) f(x) = |x + 1|.

🗲 равно некоторому (Чтобы доказать, что множество значений функции χ , нужно доказать два утверждения: (I) все значения функции f

; (2) любой элемент 💢 является значением функции. принадлежат Χ

2. Найти области определения и значений функций, графики которых изображены на рисунке.

3. Найти область значений функций:

a)
$$f(x) = \begin{cases} |x| & \text{при } x \in [-3, 2] \\ \text{не определено иначе} \end{cases}$$

6) $g(x) = [x]; B) h(x) = \{x\}.$

4. Построить функции: а) с областью определения]-1,1[и областью значений [0,2[; б) * с областью определения [-1,1] и областью значений]-1,1[; в)*с областью определения]-1,1[и областью значений [-1, 1]; г) * с областью определения]0, 1[и областью значений $\mathbb R$

Определения. Функция $f: A \rightarrow B$ называется: а) наложением, если область значений ее совпадает с В ; б) вложением, если различным элементам A соответствуют различные элементы : из Х ≠ У сле-B дует $f(x) \neq f(y)$; в) взаимно однозначным соответствием между A и Bесли она одновременно является и вложением, и наложением.

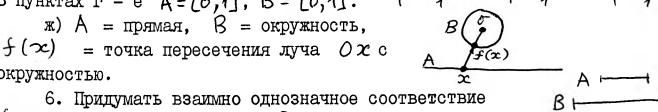
5. Какие из приведенных ниже функций являются наложениями, вложениями и взаимно однозначными соответствиями?

а) A = множество учеников 76 класса, B = множество всех букв русского алфавита, $f: x \mapsto$ (первая буква фамилии ученика

o) $A = \mathbb{R}, B = \mathbb{Z}, f: x \mapsto [x] 2 + \dots$

B) $A = \mathbb{Z}$, $B = \mathbb{R}$, $f: x \mapsto x$ В пунктах r - e A = [0,1], B = [0,1].

ж) $A = \text{прямая}, \quad B = \text{окружность},$ окружностью.



 $f: A \longrightarrow B$, если: а) A, B - отрезки (см. рис.)

6) A = [0,1], B = [0,2];

в)* А - прямая, В - полуокружность (без концов), $_{\Gamma}$)* A = 70,1[, B = R

д)* A = Jo, 1, B = Io, 1; е) A = MHOЖество / N Натуральных чисел, <math>B = MHOЖество четных натуральных чисел; ж)* A = N, B = Z; з)* A = N, B = Q

Листок Д. І. Функции (дополнительные задачи).

Обозначения. Пусть $\sharp: A \to B$, $g: B \to C$. Функция (=отображение) $x \mapsto g(f(x))$ называется композицией функций f и обозначается $g \circ f$. Таким образом, $g \circ f(x) = g(f(x))$. и m образуют угол в 7^{0} . Обозначим _ 🗜 отображение осевой симметрии относительно – относительно m . Найти $g \circ f$, а через *д* 2. Пусть А и В – две точки, f и g – цент ральные симметрии относительно А и В . Найти фод 3. Точка O называется центром симметрии множества M (состоящего из точек плоскости), если при центральной симметрии относительно O множество M переходит в себя. Доказать, что если множество М имеет более одного центра симметрии, то оно имеет бесконечно много центров симметрии. 4. Рассмотрим 8 отображений плоскости в себя, задаваемых (в координатах) формулами $\langle x, y \rangle \mapsto \langle \pm x, \pm y \rangle$ (4 варианта) и $\langle x, y \rangle \mapsto \langle \pm y, \pm x \rangle$ (4 варианта). Убедиться, что композиция любых двух отображений этого списка снова входит в список, и составить таблицу умножения (из 8 строк и 8 столбцов). 5. Взаимно однозначное отображение (=функция) $4:A \to A$, где Aконечное множество, называется перестановкой множества 🛕 . Обычно в качестве А берут множество {1,2,..., &} и перестановку записывают в виде таблицы из двух строк; например, или, короче, $\begin{pmatrix} I & 2 & 3 & 4 \\ 3 & 2 & I & 4 \end{pmatrix}$ обозначает перестановку, переводя-32 І 4/ щую І в 3, 3 в І, а 2 и 4 — в себя. Найти $\begin{pmatrix} I & 2 & 3 & 4 \\ 4 & I & 3 & 2 \end{pmatrix}$ $\begin{pmatrix} I & 2 & 3 & 4 \\ I & 3 & 2 & 4 \end{pmatrix}$ 6. Найти перестановку f множества $\{1,2,3,4\}$, для которой $f \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$

7. Доказать, что для любой перестановки f найдется такое n, что $f \circ f \circ f = e$ (через e обозначена тождественная перестановка, оставляющая все числа на месте). Наименьшее такое n называется порядком перестановки f.

8. Существуют ли перестановки множества $\{1,2,3,4,5\}$, имеющие порядок: а) 3; б) 4; в) 5; г) 6; д) 7?

9. Найти число перестановок множества из 🕻 элементов.

IO. Транспозицией называется перестановка, меняющая два числа местами и оставляющая все остальные числа на месте. Доказать, что если композиция n транспозиций равна e, то число n четно.

II. Доказать, что всякая перестановка представляется в виде композиции транспозиций.