Листок 8. Действительные числа: доказательство неравенств.

Доказать, что при всех значениях переменных: I. $\alpha(\alpha - \beta) \ge \beta(\alpha - \beta)$. 2. $\alpha^2 - \alpha \beta + \beta^2 \ge \alpha \beta$.

3. если x > 0, то $x + \frac{1}{x} \geqslant 2$. 4. если a + b = 1, a, b > 0, то $ab \leq \frac{1}{4}$.

5. если $0 \le a \le 1, \beta \ge 1$, то $a + b \ge 1 + ab$ 6.* $a^2 + b^2 + c^2 \ge ab + ac + bc$. 7.* если a + b + c = 1, то $a^2 + b^2 + c^2 \ge \frac{1}{3}$.

- 8. Доказать, что при любом 3C > O выполнено $(1+x)^m > 1+nx$ а) при n=2 ; б) при n=3 ; в) π при любом натуральном π .
- 9.* Найти такое & , чтобы а) $(1,001)^{\frac{1}{8}}$ 1983 (Указание. См. задачу 8.); б) $(0.999)^{n} \le 1/1983$.

IO. $[\alpha]+[\beta] \leq [\alpha+\beta]$ (напомним, $[\infty]$ – целая часть ∞).

II* Доказать, что если a > 1 , $b + c < \alpha + 1$, c > b , то $\alpha > b$

- I2. (Неравенство Коши.) (А) Если α , θ >0 , $\alpha\theta=1$, то $\alpha+\theta\geqslant 2$. (Б)* Если α , β , c > 0 , $\alpha \beta c = 1$, то $\alpha + \beta + c \geqslant 3$. (Указание. Переставляя α , θ , c можно считать, что $\alpha \leq 1$, $\theta \geq 1$. Затем воспользуйтесь (А) и задачей 5.)
- 13. Известно, что процент психов среди математиков больше, чем среди нематематиков. Доказать, что процент математиков среди психов больше, чем среди нормальных людей.
- I4. Города A и B расположены на реке, $AB = \ell$. Катер, собственная скорость которого равна $\sqrt{}$, вышел из A вдоль по течению, дошел до β , повернул назад и вернулся в A . Доказать, что время, затраченное им, больше, чем 2ℓ (время, необходимое, если течения HeT)
- 15. Едет колонна автобусов. Автобус считается переполненным, если в нем едет более 50 пассажиров. Докажите, что процент пассажиров, едущих в переполненных автобусах, не маньше процента переполненных автобусов.
- 16. Докажите, что площадь прямоугольника не больше площади квадрата с тем же периметром.
- 17* В трех сосудах налито по I л смеси кислоты с водой. Процентное содержание кислоты в них равно 20%, 40% и 70%. Какое наибольшее количество 50%-го раствора можно составить, смешивая их?

 $18^{\frac{1}{2}}$ Найти такое n , чтобы $1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} > 1983$

- 19^{*} Доказать, что при всех n $\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 1$ (Указание. $\frac{1}{n^2} \le \frac{1}{n(n-1)} = \frac{1}{n-1} \frac{1}{n}$) $\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 1$ 20. Известно, что сумма нескольких чисел равна I. Может ли сумма
- их квадратов бить меньше 0,001 ?
- 21. Придумать десять чисел x_1, x_2, \dots, x_{10} так, чтобы $x_1 \ge x_2 \ge \dots \ge x_{10}$, $x_1^2 + x_2^2 + \dots + x_{10}^2 = 1$ и чтобы x_4 было как можно больше. (Докажите, что Ваш способ - наилучший!)
- 22. Доказать, что функция $x \mapsto \frac{1+x}{1+2x}$, рассматриваемая на множестве $[0, +\infty[$ - убывающая.