І. Модуль и аргумент.

Напомним, что комплексное число1=a+bi изображается точкой $Z \langle a, \ell \rangle$, а расстояние от начала координат до точки Z называется модулем числа ж и обозначаetch |z| : $|z| = \sqrt{a^2 + b^2}$

на который нужно повернуть ось абсцисс для того, чтобы она проходила через точку Ξ . Число φ определено с точностью до кратных 360° (или 2π , если углы измеряются в радианах): если φ - аргумент z, TO $\varphi + 360 \cdot k \quad (\varphi + 2\pi k)$ - Takke applyment \neq (при целых k).

- I. Найти модуль и аргумент чисел i, 1+i, √3+i, 3-4i, -7.
- 2. Число 🗷 имеет модуль 🗸 и аргумент 👂 . Найти его действительную и мнимую части.
- 3. По модулю и аргументу (измерен в радианах) найти число: (4) $2, \pi$; (2) $0, \pi/3$; (3) $\sqrt{2}, -\pi/4$; (4) $-2, 3\pi/2$; (5) $1, \pi/2$.
- 4. Число \mathcal{Z}_1 имеет модуль \mathcal{T}_1 и аргумент \mathcal{Y}_1 , число \mathcal{Z}_2 имеет модуль τ_2 и аргумент φ_2 . Доказать, что их произведение $\Xi_1\Xi_2$ имеет модуль $7_1 7_2$ и аргумент $\varphi_1 + \varphi_2$. (Указание. Использовать формулы для синуса и косинуса суммы.)

При умножении комплексных чисел модули умножаются, а аргументы складываются!

Мы видим, что аргумент подобен логарифму: аргумент произведения есть сумма аргументов. Это не случайно: на самом деле аргумент есть (при надлежащем понимании этих слов) "мнимая часть логарифма".

Обозначим через $U(\mathbf{v})$ комплексное число с модулем I и аргументом \mathbf{v} .

- 5. Доказать, что $U(\gamma_1 + \gamma_2) = U(\gamma_1) \cdot U(\gamma_2)$, $U(-\gamma) = 1/U(\gamma) = \overline{U(\gamma)}$.
- 6. Доказать, что при целом n выполнено равенство $U(n\varphi) = [U(\varphi)]^n$.
- 7. Используя формулы $(\alpha+\ell)^2=\dots$, $(\alpha+\ell)^3=\dots$ и предыдущую задачу, выразить $\cos 2\varphi$, $\sin 2\varphi$, $\cos 3\varphi$, $\sin 3\varphi$ через $\cos \varphi$
- 8.* Вычислить суммы $\cos \varphi + \cos 2\varphi + \ldots + \cos n\varphi$ и $\sin \varphi + \sin 2\varphi + \ldots + \sin n\varphi$. (Указание. Использовать функцию ${\mathcal U}$ и формулу суммы геометрической прогрессии.)
 - 9.* Вычислить суммы $\cos \varphi + 2\cos 2\varphi + \dots + n\cos n\varphi$ и $\sin \varphi + \sin 2\varphi + \dots + n\sin n\varphi$.
- IO. Пусть γ произвольное число. Рассмотрим преобразование $m{\ell}$ комплексной плоскости, являющееся умножением на $U(m{arphi})$: $f(z)=z\cdot V(y)$. Что это за преобразование?
- II^* Пусть w произвольное комплексное число. Доказать, что преобразование умножения на W ($Z \mapsto WZ$) есть преобразование подобия, являющееся композицией поворота и гомотетии. Найти угол поворота и коэффициент гомотетии.

 $(n \in \mathbb{N}, n \ge 2, \varphi \in \mathbb{R}).$ IT $(\varphi + \cos(\varphi + \frac{360}{n}) + \cos(\varphi + 2 \cdot \frac{360}{n}) + \dots + \cos(\varphi + (n-1) \cdot \frac{360}{n}) = 0$

2. Разные задачи.

- 13* Доказать, что если числа α , β , c являются вершинами равностороннего треугольника, то $a^2 + \beta^2 + c^2 = a\beta + ac + bc$. Верно ли обратное?
- I4. Какие значения может принимать аргумент числа z , если |z-2i| < 1?
- I5* Найти множество тех \mathbb{Z} , для которых (I)|($\mathbb{Z}-1$)/($\mathbb{Z}+1$)| = 1; (2) |($\mathbb{Z}-1$)/($\mathbb{Z}+1$)| = 2.
- 16* На плоскости даны точки α и ℓ . Где находятся те Ξ , для которых число $(\Xi \alpha)/(\Xi \ell)$ (I) действительное; (2) чисто мнимое?
- 17^* Доказать, что уравнение вида $\mathbb{Z}^{\mathbb{Z}} + \alpha \mathbb{Z} + \overline{\alpha} \mathbb{Z} + C = O$, где $\alpha \in \mathbb{C}$, $C \in \mathbb{R}$, задает пустое множество, точку или окружность. Как определить, что именно? Всякую ли окружность можно так задать?

3. Корни из единицы.

- I8. Найти все \mathbb{Z} , для которых $\mathbb{Z}^n = 1$. (Их n .) Они называются корнями n -ой степени из I.
- 19. Найти все Ξ , для которых $\Xi^n = \alpha$ (α заданное комплексное число).
- 20^* Если \mathbb{Z} корень m—ой степени из I, то \mathbb{Z}^k также корень n—ой степени из I (при любом k). Если среди \mathbb{Z}^k при всех \mathbb{Z}^k встречаются все корни n—ой степени из I, то \mathbb{Z}^k называют первообразным корнем. Сколько существует первообразных корней n—ой степени, если (I) n = 6; (2) n = 100?
- $2I^*$ Доказать, что сумма всех корней n-ой степени из I равна 0 (при n>1).
- 22^* Дан правильный многоугольник $A_1 \dots A_n$. Доказать, что сумма $|XA_1|^2 + |XA_2|^2 + \dots + |XA_n|^2$ зависит лишь от расстояния от точки X до центра описанной около многоугольника окружности.
- 23* Имеется конечное множество $S \subset \mathbb{C}$, для которого выполнено такое свойство: произведение двух элементов из S принадлежит S. Известно, что $O \notin S$. Доказать, что: (I) $I \in S$; (2) если $x \in S$ то $1/x \in S$; (3) |x| = 1 для всех $x \in S$; (4) всякий элемент $x \in S$ является корнем некоторой степени из I; (5) S состоит из всех корней степени n из I, где n число элементов в S.
 - 24^* Найти произведение всех корней степени n из I.
- 25* Число x является корнем из 1 степеней a и b . Доказать, что оно является корнем из 1 степени НОД (a, b). В частности, ни

- одно число (кроме 1) не может одновременно быть корнем из I степеней α и ℓ , если α и ℓ взаимно просты.
- $26.^*$ Существует ли число Ξ с /2/=1, не являющееся корнем из I (ни для какой степени)?
 - 27.**Является ли число $3/5 + 4/5 \dot{c}$ корнем из I?
- 28.* Какие числа вида $a + \ell i$, где a и ℓ рациональны, являются корнями из I ? (Ответ: 1, -1, i, -i.)

4. Инверсия.

- Инверсией с центром O и радиусом τ называется преобразование, переводящее каждую отличную от O точку χ в такую точку χ' , лежащую на луче OX, что $IOXI \cdot IOX' = \tau^2$.
 - 29. Какие точки неподвижны при инверсии? Чему равно $f \circ f$, если $f \circ f$, неподвижны при инверсии?
- 30. Доказать, что если f инверсия, а точки A и B не лежат на прямой, проходящей через центр инверсии, то около четырехугольника с вершинами A, B, f(A), f(B) можно описать окружность.
- 31. Доказать, что при инверсии прямые, не проходящие через центр инверсии, переходят в окружности, проходящие через центр инверсии; наоборот, окружности, проходящие через центр, переходят в прямые, не проходящие через центр.
- 32* Доказать, что окружности, не проходящие через центр инверсии, переходят в окружности, не проходящие через центр инверсии.
 - 33* Куда переходит число и при инверсии с центром 0 и радиусом 1?
 - 34* Hapirobath MHOXECTBO $\{ \exists \mid Re(1/\exists) = 1/2 \}$.
- 35^{*} Доказать, что при преобразовании ₹ → 1/₹ прямые и окружности переходят в прямые и окружности (хотя окружности монут перейти в прямые, а прямые в окружности).
- 36* Доказать, что любое дробно-линейное преобразование (преобразование вида $2 \mapsto (\alpha 2 + \beta)/(c 2 + d)$, где $\alpha, \beta, c, d \in C$, $\alpha d \beta c \neq D$) является композицией нескольких преобразований, каждое из которых есть либо сдвиг ($z \mapsto z + C$), либо гомотетия ($z \mapsto kx$, $k \in \mathbb{R}$), либо поворот вокруг начала координат, либо преобразование $z \mapsto 1/z$. Уто будет ϕ и ad bc = 0?
- 37.* Доказать, что при дробно-линейном преобразовании прямые и окружности переходят в прямые и окружности.
- 38* Доказать, что при инверсии сохраняются углы между окружностями и прямыми: если окружности (или окружность и прямая, или две прямые) пересекались под углом «, то их образы тоже пересекаются под углом
 - ∠ (Угол измеряется как угол между касательными.)
- 39. Доказать, что любое дробно-линейное преобразование сохраняет углы между прямыми и окружностями.
- 40^{*} Построить дробно-линейное преобразование, переводящее верхнюю полуплоскость $\{ \ge | \text{Im } \ge 0 \}$ в единичный круг $\{ \ge | \text{Iz} | < 1 \}$.