Inversion-I.

It is required to solve 2 problems to pass the task.
Problem 1. Given a circle ω with center O and arbitrary point A construct the image of point A under inversion with respect to ω with a) ruler and compass; b) compass only.

Problem 2. Prove that for any two circles ω_{1} and ω_{2} there exists inversion taking them to $a)$ equal circles; b) to concentric circles, if they do not intersect.

Problem 3. Given a point A and two circles ω_{1} and ω_{2} construct a circle ω passing through A and tangent to ω_{1} and ω_{2}. How many solution does this problem have?

Inversion-I.

It is required to solve 2 problems to pass the task.
Problem 1. Given a circle ω with center O and arbitrary point A construct the image of point A under inversion with respect to ω with a) ruler and compass; b) compass only.
Problem 2. Prove that for any two circles ω_{1} and ω_{2} there exists inversion taking them to $a)$ equal circles; b) to concentric circles, if they do not intersect.

Problem 3. Given a point A and two circles ω_{1} and ω_{2} construct a circle ω passing through A and tangent to ω_{1} and ω_{2}. How many solution does this problem have?

